Estimating Subnational Under-Five Mortality Rates Using a Spatio-Temporal Age-Period-Cohort Model

Connor Gascoigne

Imperial College London

GEOMED, Hasselt, Belgium

9-11 September 2024

MRC Centre for Environment & Health

Imperial College London

Outline

- Introduction
- Methods
- Results
- Conclusion

Introduction

Under-Five Mortality

- SDG 3.2:
 - By 2030, 25 deaths per 1000 live births.
 - In 2022, 37 deaths per 1000 live births.
 - Disproportionate rates in LMICs
 - 14 imes higher in sub-Saharan Africa than EU and NA.
- How to help achieve this:
 - Subnational estimates and predictions of U5M in LMICs.
 - Identify areas of current and future high mortality.
 - Targeted intervention.
- Challenges:
 - Data source.
 - Data sparsity.
- Previous U5M literature:
 - Survey data for LMIC.
 - Subnational estimates and predictions of U5M.

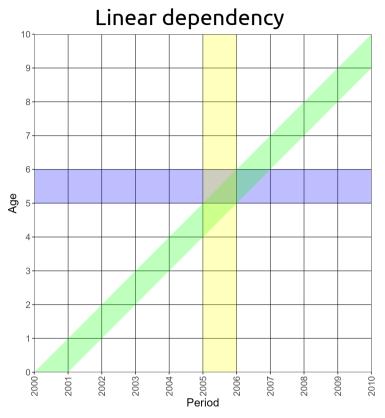
- Weighted (direct) estimates:
 - Horvitz and Thompson, Journal of the American Statistical Association, 1952.
 - Weights reflect the survey design.
 - Data sparsity estimates are unstable and variance is large.

- Weighted (direct) estimates:
 - Horvitz and Thompson, Journal of the American Statistical Association, 1952.
 - Weights reflect the survey design.
 - Data sparsity estimates are unstable and variance is large.
- Fay and Herriot estimates:
 - Fay and Herriot, Journal of the American Statistical Association, 1979.
 - Models direct estimates and accounts for trends in time (period) and space to decrease variance.
 - Data sparsity direct estimates still unstable.

- Weighted (direct) estimates:
 - Horvitz and Thompson, Journal of the American Statistical Association, 1952.
 - Weights reflect the survey design.
 - Data sparsity estimates are unstable and variance is large.
- Fay and Herriot estimates:
 - Fay and Herriot, Journal of the American Statistical Association, 1979.
 - Models direct estimates and accounts for trends in time (period) and space to decrease variance.
 - Data sparsity direct estimates still unstable.
- Cluster level model estimates:
 - Wakefield et al., Statistical Methods in Medical Research, 2019.
 - Uses random effects to account for survey design and accounts for trends in age, period, and space.
 - Data source data contains (birth) cohort but not used.

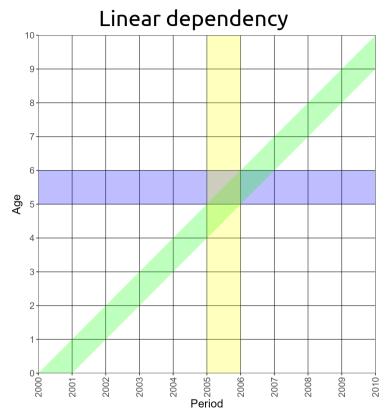
- Weighted (direct) estimates:
 - Horvitz and Thompson, Journal of the American Statistical Association, 1952.
 - Weights reflect the survey design.
 - Data sparsity estimates are unstable and variance is large.
- Fay and Herriot estimates:
 - Fay and Herriot, Journal of the American Statistical Association, 1979.
 - Models direct estimates and accounts for trends in time (period) and space to decrease variance.
 - Data sparsity direct estimates still unstable.
- Cluster level model estimates:
 - Wakefield et al., Statistical Methods in Medical Research, 2019.
 - Uses random effects to account for survey design and accounts for trends in age, period, and space.
 - Data source data contains (birth) cohort but not used.
- Why cohort:
 - Facilitates stable estimates and predictions.
 - Produces predcitions less influenced by yearly fluctuations.
 - Include cohort along side age and period for modelling U5M.

APC: Previous Methods



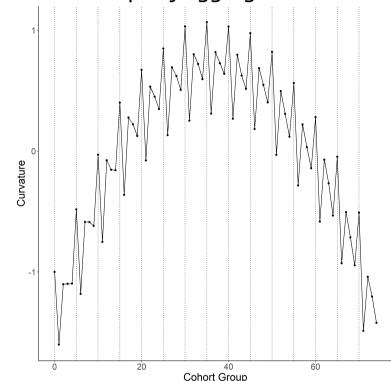
- Accounted for in numerous ways:
 - Holford, *Biometrics*, 1983.
 - Carstensen, Statistics in Medicine, 2006.

APC: Previous Methods



- Accounted for in numerous ways:
 - Holford, *Biometrics*, 1983.
 - Carstensen, Statistics in Medicine, 2006.

More issues when age, period and cohort are not equally aggregated



- Noted by: Holford, *Statistics in Medicine*, 2006.
- Approach suggested by: Gascoigne and Smith, *Statistics in Medicine*, 2023.

Aims

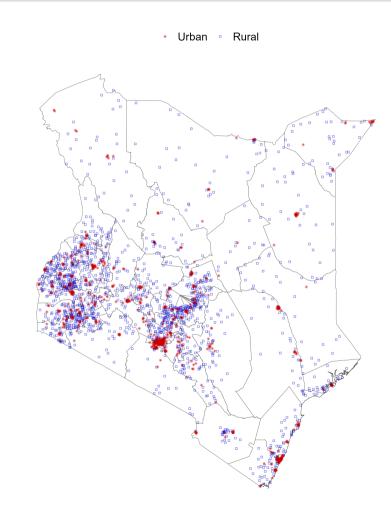
- Build a flexible model to include cohort alongside the age and period trends to estimate U5M.
 - Account for linear dependency.
 - Account for issues when data are in not equally aggregated.
- Extend the APC model to account for the complex survey design.
 - Use data from the DHS.

Methods

Demographic Health Survey

Questionnaire and Outcome

- Demographic and Health Surveys (DHS):
 - 400 surveys in 90 countries (incl. sub-Saharan Africa).
- Stratified two-stage cluster design:
 - First stage Primary Sampling Units (PSUs) or "clusters".
 - Second stage 25/30 households per cluster.
 - Stratification geographical region crossed with urban/rural classification.
- We use the 2014 Kenyan DHS (2014 KDHS).
 - 1,612 clusters.
 - 25 households per cluster.
 - 92 stratum.
 - 47 counties (admin-1).
 - 2 all-urban counties (Nairobi and Mombasa).
 - 92 stratum.



Demographic Health Survey

Questionnaire and Outcome

- Survey participants:
 - All women aged 15-49 who spent night before in household.
- Survey responses of interest:
 - Cluster Number.
 - Date of birth of child.
 - Child is alive (1 = Yes, 0 = No).
 - Age and death in months.
- Outcome:
 - Mortality counts.
 - Age (monthly), period (yearly), cohort (yearly) and cluster.
- Study period:
 - Data for 2006 2013.
 - Predict years 2014 2018.

Statistical Model

Let $y_{\tilde{a},p,c,k}$ and $n_{\tilde{a},p,c,k}$ be the number of observed deaths and number of months at risk for age group \tilde{a} , period p, cohort c and in cluster k.

$$egin{aligned} y_{ ilde{a},p,c,k} | \pi_{ ilde{a},p,c,k}, rac{oldsymbol{d}}{oldsymbol{d}} &\sim \operatorname{BetaBinomial}\left(n_{ ilde{a},p,c,k}, \pi_{ ilde{a},p,c,k}, rac{oldsymbol{d}}{oldsymbol{d}}
ight) \ & \operatorname{logit}\left(\pi_{ ilde{a},p,c,k}
ight) = eta_1 + I\left(oldsymbol{s}_k \in \operatorname{urban}\left(s_1 + t_{1,r} eta_3 + t_{2,r} eta_4 +
u_{ ilde{a}} + \eta_p + \xi_c + S_{r[s_k]} + \delta_{p,r[s_k]}
ight) \end{aligned}$$

- U5M literature, Wakefield et al., Statistical Methods in Medical Research, 2019:
 - Discrete age groups $ilde{a} = \{0-1, 1-12, 12-24, 24-36, 36-48, 48-60\}$
 - -d, overdispersion accounts for clustering.
 - $-\beta_1$ and $\beta_1 + \beta_2$, intercepts for urban/rural stratification.
 - $S_{r[s_k]}$ accounts for admin-1 region of cluster.
 - $-\delta_{p,r[s_k]}$ accounts for space-time interaction of cluster admin-1 region and year (period).

Statistical Model

Let $y_{\tilde{a},p,c,k}$ and $n_{\tilde{a},p,c,k}$ be the number of observed deaths and number of months at risk for age group \tilde{a} , period p, cohort c and in cluster k.

$$egin{aligned} y_{ ilde{a},p,c,k} | \pi_{ ilde{a},p,c,k}, d &\sim \operatorname{BetaBinomial}\left(n_{ ilde{a},p,c,k}, \pi_{ ilde{a},p,c,k}, d
ight) \ \operatorname{logit}\left(\pi_{ ilde{a},p,c,k}
ight) = eta_1 + I\left(oldsymbol{s}_k \in \operatorname{urban}\left)eta_2 + oldsymbol{t}_{1,r}oldsymbol{eta}_3 + oldsymbol{t}_{2,r}oldsymbol{eta}_4 +
u_{ ilde{a}} + \eta_p + \xi_c + S_{r[s_k]} + \delta_{p,r[s_k]} \end{aligned}$$

- U5M literature, Wakefield et al., Statistical Methods in Medical Research, 2019:
 - Discrete age groups $\tilde{a} = \{0-1, 1-12, 12-24, 24-36, 36-48, 48-60\}$
 - Overdispersion d accounts for clustering.
 - $-\beta_1$ and $\beta_1+\beta_2$ account for urban/rural stratification.
 - $-S_{r[s_k]}$ accounts for admin-1 region of cluster.
 - $-\delta_{p,r[s_k]}$ accounts for space-time interaction of cluster admin-1 region and year (period).
- APC literature, Gascoigne and Smith, Statistics in Medicine, 2023:
 - $-t_{1,r}\beta_3$ and $t_{2,r}\beta_4$, linear trends of temporal effects.
 - $-\nu_{\tilde{a}}$, η_p , and ξ_c , non-linear trends of temporal effects.

Statistical Model

Let $y_{\tilde{a},p,c,k}$ and $n_{\tilde{a},p,c,k}$ be the number of observed deaths and number of months at risk for age group \tilde{a} , period p, cohort c and in cluster k.

$$egin{aligned} y_{ ilde{a},p,c,k} | \pi_{ ilde{a},p,c,k}, d &\sim \operatorname{BetaBinomial}\left(n_{ ilde{a},p,c,k}, \pi_{ ilde{a},p,c,k}, d
ight) \ \operatorname{logit}\left(\pi_{ ilde{a},p,c,k}
ight) = eta_1 + I\left(oldsymbol{s}_k \in \operatorname{urban}\left)eta_2 + t_{1,r}eta_3 + t_{2,r}eta_4 +
u_{ ilde{a}} + \eta_p + \xi_c + S_{r[s_k]} + \delta_{p,r[s_k]}
ight. \end{aligned}$$

- U5M literature, Wakefield et al., Statistical Methods in Medical Research, 2019:
 - Discrete age groups $ilde{a} = \{0-1, 1-12, 12-24, 24-36, 36-48, 48-60\}$
 - Overdispersion d accounts for clustering.
 - eta_1 and eta_1+eta_2 account for urban/rural stratification.
 - $-S_{r[s_k]}$ accounts for admin-1 region of cluster.
 - $\delta_{p,r[s_k]}$ accounts for space-time interaction of cluster admin-1 region and year (period).
- APC literature, Gascoigne and Smith, Statistics in Medicine, 2023:
 - 2/3 linear trends of temporal effects $t_{1,r}\beta_3$ and $t_{2,r}\beta_4$.
 - 3/3 non-linear trends of temporal effects $u_{ ilde{a}}$, η_p and ξ_c .
- Bayesian paradigm:
 - Priors on all model parameters.
 - Posterior distribution (incl. uncertainty).

Constructing U5MR

General formula:

$$ext{U5MR}_{p,r} = 1 - \prod_{i=1}^6 \left[1 - ext{expit}\left(ext{logit}\left[\pi_{ ilde{a}(i),p,ar{c},r}
ight]
ight)
ight]^{z[i]}$$

Constructing U5MR

General formula:

$$ext{U5MR}_{p,r} = 1 - \prod_{i=1}^6 \left[1 - ext{expit}\left(ext{logit}\left[\pi_{ ilde{a}(i),p,ar{c},r}
ight]
ight)
ight]^{z[i]}$$

Due to urban and rural intercepts:

 $U5MR_{p,r,urban}$ and $U5MR_{p,r,rural}$

11 / 18

Constructing U5MR

General formula:

$$ext{U5MR}_{p,r} = 1 - \prod_{i=1}^6 \left[1 - ext{expit}\left(ext{logit}\left[\pi_{ ilde{a}(i),p,ar{c},r}
ight]
ight)
ight]^{z[i]}$$

Due to urban and rural intercepts:

$$U5MR_{p,r,urban}$$
 and $U5MR_{p,r,ural}$

Using $q_{p,r}$, the proportion of population in period p and admin-1 region r that are from a rural setting:

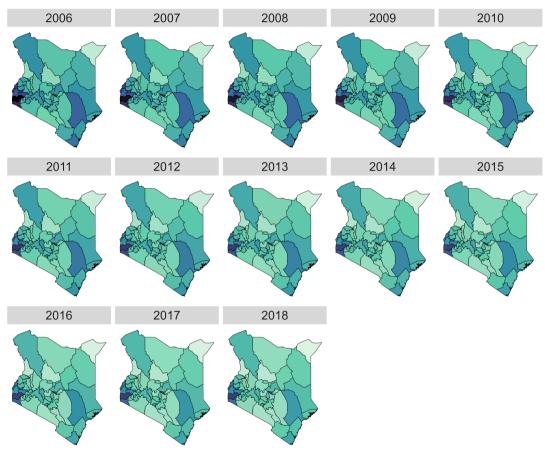
$$\mathrm{U5MR}_{p,r} = [q_{p,r} \times \mathrm{U5MR}_{p,r,\mathrm{rural}}] + [(1-q_{p,r}) \times \mathrm{U5MR}_{p,r,\mathrm{urban}}]$$

Results

12 / 18

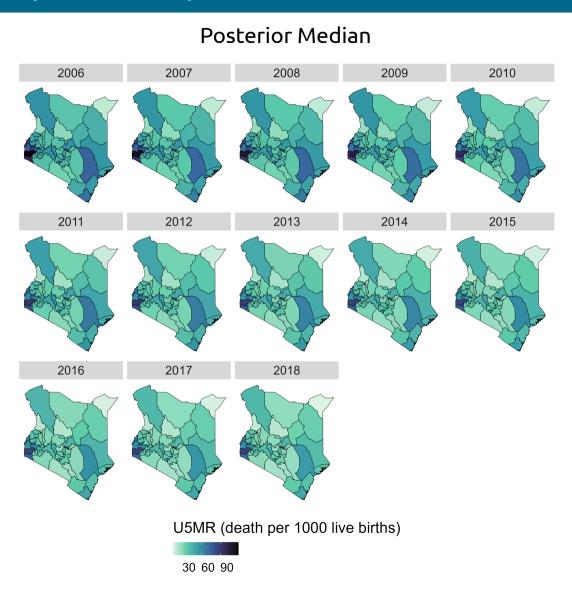
Spatio-temporal

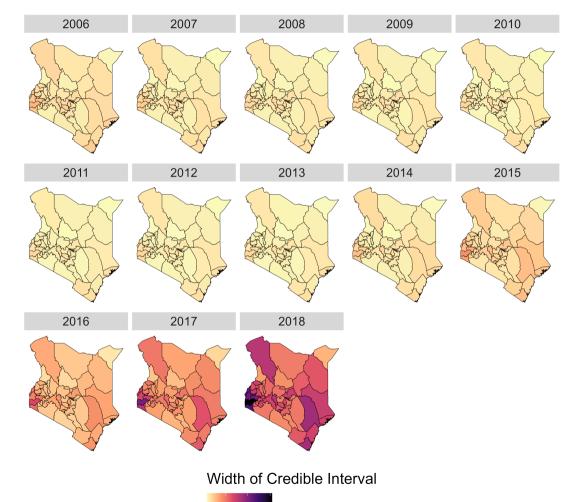
Posterior Median



U5MR (death per 1000 live births)

Spatio-temporal

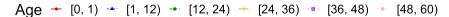


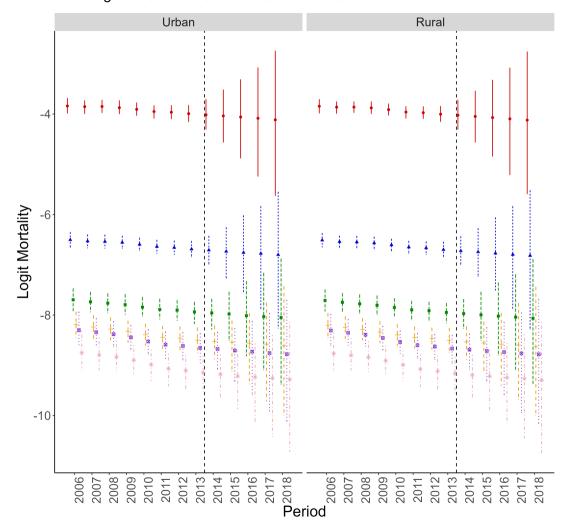


100 200 300

Age-Period-Cohort

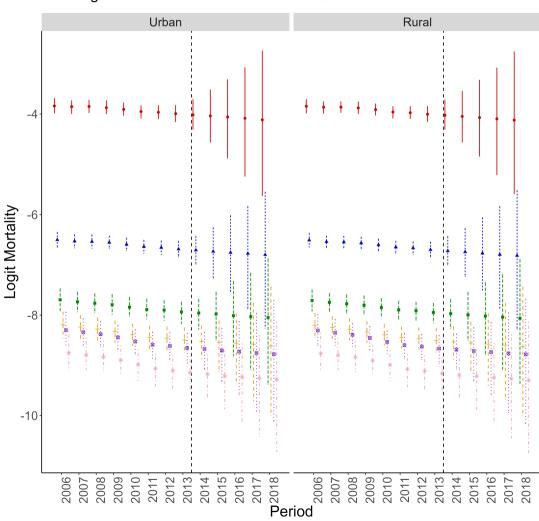
Age-by-period



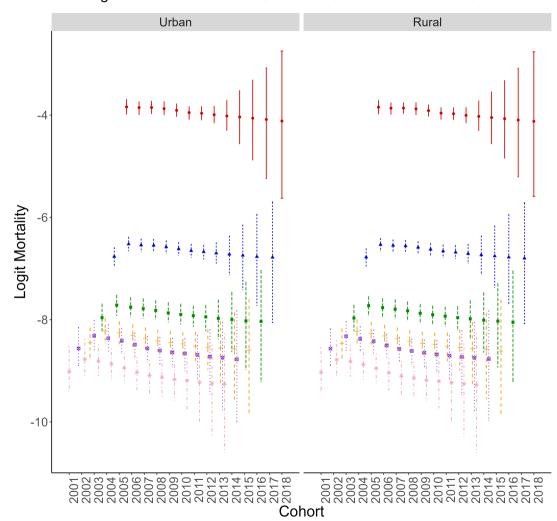


Age-Period-Cohort

Age-by-period



Age-by-cohort



- Cross validation against direct estimates:
 - Direct estimates are "Gold Standard".
 - Compare submodels of APC model (AP and AC).
- Age-period model:
 - Similar to cluster-level models.
 - Only include age and period (time/year).
- Age-cohort:
 - Want to model cohort without identification.
 - Omit period in favour of cohort.

- Cross validation against direct estimates:
 - Direct estimates are "Gold Standard".
 - Compare submodels of APC model (AP and AC).
- Age-period model:
 - Similar to cluster-level models.
 - Only include age and period (time/year).
- Age-cohort:
 - Want to model cohort without identification.
 - Omit period in favour of cohort.

Model	MAE	MSE	IS	Cov.
AP	70.1	77.4	145.5	88.4
AC	71.3	80.2	155	88.4
APC	69	73.9	142.6	88.4

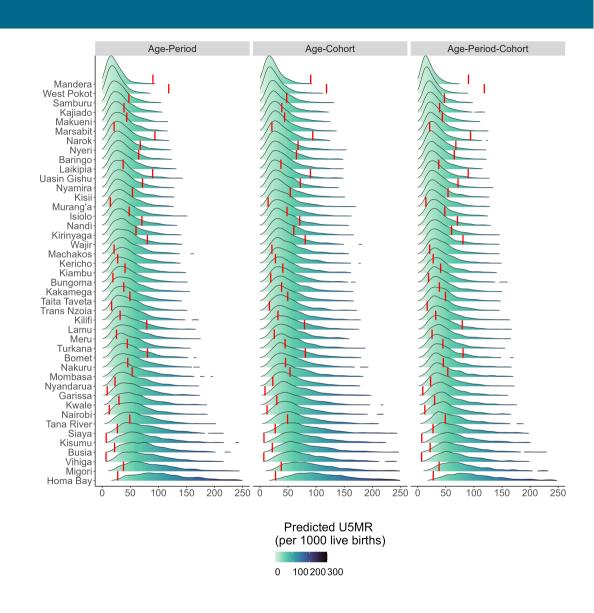
¹ MAE and MSE: x10^(-2)

² Coverage: %

- Cross validation against direct estimates:
 - Direct estimates are "Gold Standard".
 - Compare submodels of APC model (AP and AC).
- Age-period model:
 - Similar to cluster-level models.
 - Only include age and period (time/year).
- Age-cohort:
 - Want to model cohort without identification.
 - Omit period in favour of cohort.

Model	MAE	MSE	IS	Cov.
AP	70.1	77.4	145.5	88.4
AC	71.3	80.2	155	88.4
APC	69	73.9	142.6	88.4

¹ MAE and MSE: x10^(-2)



² Coverage: %

Conclusion

Conclusion

- Included cohort alongside age and period in U5M:
 - U5MR literature novelty inclusion of cohort.
 - APC literature novelty accounting for complex survey design and application to U5MR.
- Is it reasonable to include cohort in context of U5M?
 - Yes, the model comparison to direct estimates show APC model is in-line with literature.
 - Up to the users discretion whether to include cohort.

Thanks For Listening, Any Questions?

☑: c.gascoigne@imperial.ac.uk

: connorgascoigne.github.io

X: connorgascoigne

Preprint on Arxiv:

2014 Kenyan DHS

Stratification:

- 47 counties (admin-1).
- Nairobi and Mombasa are both entirely urban counties.
- 92 stratum ([45×2] + Nairobi + Mombasa).

First sampling stage:

- 1,612/96,251 primary sampling units (PSUs) selected.
- Defined by 2009 Kenyan Census.
- Selected using probability proportional to size.
- Of 1,612, 617 urban and 995 rural.

Second sampling stage:

- 40,3000 households sampled in total.
- 25 households per PSU.

Geospatial jittering:

- For confidentiality.
- 2km radius for urban jitter.
- 5km radius for rural jitter.
- For an additional 1% of rural, 10km radius.

Prior Distributions

Fixed effects:

• $\beta_1, \beta_2, \beta_3, \beta_4 \sim N(0, 1000)$.

Temporal (non-linear) effects:

• $u_{ ilde{a}}| au_{
u}\sim \mathrm{RW2}\left(au_{
u}
ight)$, $\eta_{p}| au_{\eta}\sim \mathrm{RW2}\left(au_{\eta}
ight)$ and $\xi_{c}| au_{\xi}\sim \mathrm{RW2}\left(au_{\xi}
ight)$.

Spatial effect:

• $S_{r[s_k]}| au_s, \phi \sim ext{BYM2}\left(au_s, \phi
ight)$ where $\phi \in \{0, 1\}$.

Spatio-temporal effect:

 $ullet \ \delta_{p,r[s_k]} | au_\delta \sim ext{N} \left(0, au_\delta^{-2}
ight).$

Overdispersion:

• $d \sim N(0, 2.5)$.

Hyperpriors:

- Precisions: $PC\left(au_{\star}>1
 ight)=0.01.$
- Spatial mixing: PC $(\phi > 1/2) = 2/3$.

Explaining The U5MR Formula

Discrete time survival analysis

Under Five Mortality Rate

Hazard for month a:

$$h\left(a\right) = p\left(A = a | A \ge a\right) = h_a$$

Survival beyond month a:

$$egin{aligned} ext{Survival}\left(a
ight) &= p\left(A > a
ight) \ &= p\left(A > a | A \geq a
ight) imes \ p\left(A > a - 1 | A \geq a - 1
ight) imes \ & \cdots imes p\left(A > 1 | A \geq 1
ight) \ &= \left[1 - ext{h}_a
ight] \left[1 - ext{h}_{a-1}
ight] imes \cdots imes \left[1 - ext{h}_1
ight]. \end{aligned}$$

Discrete Hazards:

- Constant hazard within each age group.
- $h_{48} = \cdots = h_{59} = h_{52.5}$.
- $h_{36} = \cdots = h_{47} = h_{41.5}$.
- . . .

U5MR:

$$egin{aligned} ext{U5MR} &= 1 - ext{Survival} \left(a = 59
ight) \ &= 1 - \left[1 - ext{h}_{59}
ight] \left[1 - ext{h}_{58}
ight] imes \cdots imes \left[1 - ext{h}_{0}
ight] \ &= 1 - \left[1 - ext{h}_{52.5}
ight]^{12} \left[1 - ext{h}_{41.5}
ight]^{12} imes \ & \left[1 - ext{h}_{29.5}
ight]^{12} \left[1 - ext{h}_{17.5}
ight]^{12} imes \ & \left[1 - ext{h}_{6}
ight]^{11} \left[1 - ext{h}_{0}
ight] \ &= 1 - \prod_{i=1}^{6} \left[1 - ext{h}_{ ilde{a}[i]}
ight]^{z[i]} \end{aligned}$$

Explaining The U5MR Formula

Discrete time survival analysis

Under Five Mortality Rate

$$ext{U5MR}_{p,r} = 1 - \prod_{i=1}^6 \left[1 - ext{expit}\left(ext{logit}\left[\pi_{ ilde{a}(i),p,ar{c},r}
ight]
ight)
ight]^{z[i]}$$

Where:

- $\tilde{a} = 0.5, 6, 17.5, 29.5, 41.5, 52.5$ mid points of each discrete hazard (age group).
- z=1,11,12,12,12 length of number of months in each discrete hazard.

Predictive Distribution

Assessment Criteria

- Compare model estimates (APC, AP, AC) against direct estimate at subnational level.
- U5MR distribution we calculated:
 - Contains sampling variability.
 - Does not contain variability from complex survey design.
- How to make model and direct estimates more comparable?
 - Add variation from survey design to model estimates.

Let
$$\widehat{Y}_r = \operatorname{logit}\left(\operatorname{U5MR}_r\right)$$
:

$$oldsymbol{\widetilde{Y}}_r = \widehat{Y}_r + ext{N}\left(0, \hat{V}_{ ext{r}}^{ ext{Des}}
ight)$$

where $\hat{V}_{
m r}^{
m Des}$ is the complex design variance for admin-1 region r.

Predictive Distribution

Assessment Criteria

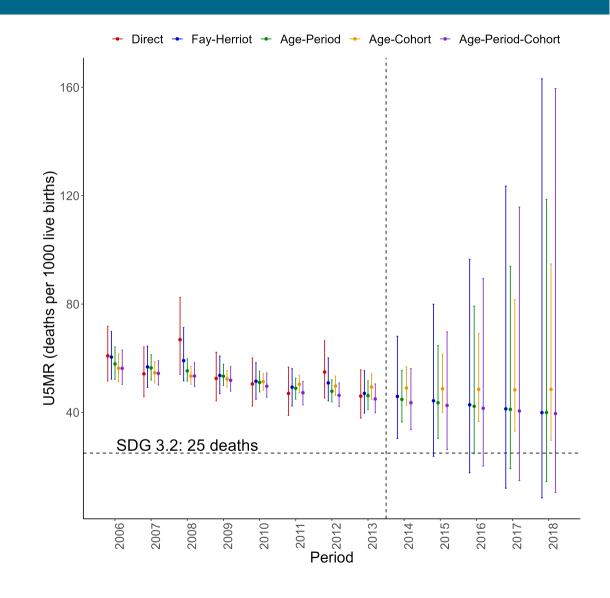
For $n=1,\ldots,N$ draws from U5MR posterior,

$$egin{aligned} ext{MAE} &= rac{1}{R} rac{1}{N} \sum_{r=1}^R \sum_{m=1}^N |\widetilde{Y}_r^{(n)} - Y_r| \ ext{MSE} &= rac{1}{R} rac{1}{N} \sum_{r=1}^R \sum_{m=1}^N \left[\widetilde{Y}_r^{(n)} - Y_r
ight]^2 \ ext{IS}_lpha\left(Y
ight) &= rac{1}{R} \sum_{r=1}^R \left[\left(u_r - l_r
ight) + rac{2}{lpha} (l_r - Y_r) \, \mathbb{I}\left(Y_r < l_r
ight) + rac{2}{lpha} (Y_r - u_r) \, \mathbb{I}\left(Y_r > u_r
ight)
ight] \end{aligned}$$

- Interval Score (IS):
 - Gneiting and Raftery, Journal of the American Statistical Association, 2007.
 - Proper Scoring rule.

National Results

- Comparison against "gold standard" direct estimates.
- Include, Fay-Herriot, Age-Period and Age-Cohort estimates.



© Connor Gascoigne Estimating U5MR with APC models 18 / 18